3.4.96 \(\int \frac {x^2}{(d+e x^2)^{3/2} (a+b x^2+c x^4)} \, dx\) [396]

Optimal. Leaf size=333 \[ -\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}+\frac {c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )} \]

[Out]

-e*x/(a*e^2-b*d*e+c*d^2)/(e*x^2+d)^(1/2)+c*arctan(x*(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-
(-4*a*c+b^2)^(1/2))^(1/2))*(d+(2*a*e-b*d)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/
2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(
-4*a*c+b^2)^(1/2))^(1/2))*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))/(a*e^2-b*d*e+c*d^2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.48, antiderivative size = 333, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1313, 197, 1706, 385, 211} \begin {gather*} \frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )} \left (a e^2-b d e+c d^2\right )}+\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )} \left (a e^2-b d e+c d^2\right )}-\frac {e x}{\sqrt {d+e x^2} \left (a e^2-b d e+c d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]

[Out]

-((e*x)/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x^2])) + (c*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c
*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b - Sqrt[b^2 - 4*a*c]
]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2)) + (c*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*
ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b + S
qrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2))

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1313

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[(
-d)*e*(f^2/(c*d^2 - b*d*e + a*e^2)), Int[(f*x)^(m - 2)*(d + e*x^2)^q, x], x] + Dist[f^2/(c*d^2 - b*d*e + a*e^2
), Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(Simp[a*e + c*d*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[q] && LtQ[q, -1] && GtQ[m, 1] && LeQ[m, 3]

Rule 1706

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (d+e x^2\right )^{3/2} \left (a+b x^2+c x^4\right )} \, dx &=\frac {\int \frac {a e+c d x^2}{\sqrt {d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{c d^2-b d e+a e^2}-\frac {(d e) \int \frac {1}{\left (d+e x^2\right )^{3/2}} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {\int \left (\frac {c d+\frac {c (-b d+2 a e)}{\sqrt {b^2-4 a c}}}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}+\frac {c d-\frac {c (-b d+2 a e)}{\sqrt {b^2-4 a c}}}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}\right ) \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{c d^2-b d e+a e^2}+\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{b-\sqrt {b^2-4 a c}-\left (-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c d^2-b d e+a e^2}+\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{b+\sqrt {b^2-4 a c}-\left (-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c d^2-b d e+a e^2}\\ &=-\frac {e x}{\left (c d^2-b d e+a e^2\right ) \sqrt {d+e x^2}}+\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}+\frac {c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 16.50, size = 2119, normalized size = 6.36 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x]

[Out]

((1 - b/Sqrt[b^2 - 4*a*c])*x*(45*Sqrt[-(((-b + Sqrt[b^2 - 4*a*c])*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2*(d
+ e*x^2))/(d^2*(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))] + (30*e*x^2*Sqrt[-(((-b + Sqrt[b^2 - 4*a*c])*(2*c*d + (-
b + Sqrt[b^2 - 4*a*c])*e)*x^2*(d + e*x^2))/(d^2*(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))])/d - 45*ArcSin[Sqrt[-((
(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))]] - (30*e*x^2*ArcSin[Sqrt[-(
((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))]])/d - (45*(2*c*d + (-b + S
qrt[b^2 - 4*a*c])*e)*x^2*ArcSin[Sqrt[-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] -
 2*c*x^2)))]])/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)) - (30*e*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^4*ArcSin[
Sqrt[-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))]])/(d^2*(-b + Sqrt[b
^2 - 4*a*c] - 2*c*x^2)) + 4*(-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2
))))^(5/2)*Sqrt[((-b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2))]*Hypergeometric2
F1[2, 2, 7/2, -(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))] + (4*e*x^2
*(-(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2))))^(5/2)*Sqrt[((-b + Sqrt
[b^2 - 4*a*c])*(d + e*x^2))/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2))]*Hypergeometric2F1[2, 2, 7/2, -(((2*c*d + (
-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2)))])/d))/(15*(b - Sqrt[b^2 - 4*a*c])*d*(-
(((2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2))))^(3/2)*(1 - (2*c*x^2)/(-b
+ Sqrt[b^2 - 4*a*c]))*Sqrt[d + e*x^2]*Sqrt[((-b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(-b + Sqrt[b^2 - 4*a*c] -
 2*c*x^2))]) + ((1 + b/Sqrt[b^2 - 4*a*c])*x*(45*Sqrt[-(((b + Sqrt[b^2 - 4*a*c])*(-2*c*d + (b + Sqrt[b^2 - 4*a*
c])*e)*x^2*(d + e*x^2))/(d^2*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))] + (30*e*x^2*Sqrt[-(((b + Sqrt[b^2 - 4*a*c]
)*(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)*x^2*(d + e*x^2))/(d^2*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)^2))])/d - 45*Ar
cSin[Sqrt[((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))]] - (30*e*x^2*ArcSin
[Sqrt[((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))]])/d + (45*(2*c*d - (b +
 Sqrt[b^2 - 4*a*c])*e)*x^2*ArcSin[Sqrt[((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2
*c*x^2))]])/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)) - (30*e*(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)*x^4*ArcSin[Sqrt
[((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))]])/(d^2*(b + Sqrt[b^2 - 4*a*c
] + 2*c*x^2)) + 4*(((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)))^(5/2)*Sqrt
[((b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))]*Hypergeometric2F1[2, 2, 7/2, ((2
*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))] + (4*e*x^2*(((2*c*d - (b + Sqrt[
b^2 - 4*a*c])*e)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)))^(5/2)*Sqrt[((b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/
(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))]*Hypergeometric2F1[2, 2, 7/2, ((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*x^2)/
(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))])/d))/(15*(b + Sqrt[b^2 - 4*a*c])*d*(((2*c*d - (b + Sqrt[b^2 - 4*a*c])*e
)*x^2)/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)))^(3/2)*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))*Sqrt[d + e*x^2]*Sq
rt[((b + Sqrt[b^2 - 4*a*c])*(d + e*x^2))/(d*(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2))])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.14, size = 246, normalized size = 0.74

method result size
default \(-16 \sqrt {e}\, \left (\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{4}+\left (4 e b -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z} +d^{4} c \right )}{\sum }\frac {\left (\textit {\_R}^{2} c d +2 \left (2 a \,e^{2}-c \,d^{2}\right ) \textit {\_R} +c \,d^{3}\right ) \ln \left (\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{2}-\textit {\_R} \right )}{c \,\textit {\_R}^{3}+3 \textit {\_R}^{2} b e -3 \textit {\_R}^{2} c d +8 \textit {\_R} a \,e^{2}-4 \textit {\_R} b d e +3 c \,d^{2} \textit {\_R} +d^{2} e b -c \,d^{3}}}{32 a \,e^{2}-32 d e b +32 c \,d^{2}}+\frac {d}{2 \left (4 a \,e^{2}-4 d e b +4 c \,d^{2}\right ) \left (\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{2}+d \right )}\right )\) \(246\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-16*e^(1/2)*(1/8/(4*a*e^2-4*b*d*e+4*c*d^2)*sum((_R^2*c*d+2*(2*a*e^2-c*d^2)*_R+c*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2
*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^3)*ln(((e*x^2+d)^(1/2)-e^(1/2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*
b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4*b*d^2*e-4*c*d^3)*_Z+d^4*c))+1/2*d/(4*a*e^2-4*b*d*e+4*c*d^2)
/(((e*x^2+d)^(1/2)-e^(1/2)*x)^2+d))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(x^2/((c*x^4 + b*x^2 + a)*(x^2*e + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 13948 vs. \(2 (301) = 602\).
time = 116.39, size = 13948, normalized size = 41.89 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(1/2)*(c*d^3 + a*x^2*e^3 - (b*d*x^2 - a*d)*e^2 + (c*d^2*x^2 - b*d^2)*e)*sqrt(-(b*c^2*d^3 - 6*a*c^2*d
^2*e + 3*a*b*c*d*e^2 - (a*b^2 - 2*a^2*c)*e^3 + ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b
^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c -
4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((c^4*d^6 - 6*a*c^3*d^4*e^2
+ 2*a*b*c^2*d^3*e^3 + 9*a^2*c^2*d^2*e^4 - 6*a^2*b*c*d*e^5 + a^2*b^2*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^
5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a
^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^
3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*
b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8
 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6
*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)
*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3
*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6))*log(-(b*c^3*d^4*x^
2 - 4*a*c^3*d^3*x^2*e - 2*a*c^3*d^4 - 4*a^2*b*c*x^2*e^4 + 2*sqrt(1/2)*((b^2*c^3 - 4*a*c^4)*d^5*x - 4*(a*b^2*c^
2 - 4*a^2*c^3)*d^3*x*e^2 + (a*b^3*c - 4*a^2*b*c^2)*d^2*x*e^3 + 3*(a^2*b^2*c - 4*a^3*c^2)*d*x*e^4 - (a^2*b^3 -
4*a^3*b*c)*x*e^5 - ((b^3*c^4 - 4*a*b*c^5)*d^8*x - (3*b^4*c^3 - 8*a*b^2*c^4 - 16*a^2*c^5)*d^7*x*e + (3*b^5*c^2
+ 4*a*b^3*c^3 - 64*a^2*b*c^4)*d^6*x*e^2 - (b^6*c + 17*a*b^4*c^2 - 72*a^2*b^2*c^3 - 48*a^3*c^4)*d^5*x*e^3 + 10*
(a*b^5*c - a^2*b^3*c^2 - 12*a^3*b*c^3)*d^4*x*e^4 - (a*b^6 + 17*a^2*b^4*c - 72*a^3*b^2*c^2 - 48*a^4*c^3)*d^3*x*
e^5 + (3*a^2*b^5 + 4*a^3*b^3*c - 64*a^4*b*c^2)*d^2*x*e^6 - (3*a^3*b^4 - 8*a^4*b^2*c - 16*a^5*c^2)*d*x*e^7 + (a
^4*b^3 - 4*a^5*b*c)*x*e^8)*sqrt((c^4*d^6 - 6*a*c^3*d^4*e^2 + 2*a*b*c^2*d^3*e^3 + 9*a^2*c^2*d^2*e^4 - 6*a^2*b*c
*d*e^5 + a^2*b^2*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5
 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 -
4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*
a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*
d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*
e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)
*e^12)))*sqrt(x^2*e + d)*sqrt(-(b*c^2*d^3 - 6*a*c^2*d^2*e + 3*a*b*c*d*e^2 - (a*b^2 - 2*a^2*c)*e^3 + ((b^2*c^3
- 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*
c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3
*b^2 - 4*a^4*c)*e^6)*sqrt((c^4*d^6 - 6*a*c^3*d^4*e^2 + 2*a*b*c^2*d^3*e^3 + 9*a^2*c^2*d^2*e^4 - 6*a^2*b*c*d*e^5
 + a^2*b^2*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a
^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*
c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^
4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^
7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 +
3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)
))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b
^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)
*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)) - (2*a^2*b*c*d - (a*b^2*c + 12*a^2*c^2)*d*x^2)*e^3 - 3*(a*b*c^2*d^2*x^2 - 2
*a^2*c^2*d^2)*e^2 - ((b^2*c^4 - 4*a*c^5)*d^7*x^2 - 3*(b^3*c^3 - 4*a*b*c^4)*d^6*x^2*e + 3*(b^4*c^2 - 3*a*b^2*c^
3 - 4*a^2*c^4)*d^5*x^2*e^2 - (b^5*c + 2*a*b^3*c^2 - 24*a^2*b*c^3)*d^4*x^2*e^3 + 3*(a*b^4*c - 3*a^2*b^2*c^2 - 4
*a^3*c^3)*d^3*x^2*e^4 - 3*(a^2*b^3*c - 4*a^3*b*c^2)*d^2*x^2*e^5 + (a^3*b^2*c - 4*a^4*c^2)*d*x^2*e^6)*sqrt((c^4
*d^6 - 6*a*c^3*d^4*e^2 + 2*a*b*c^2*d^3*e^3 + 9*a^2*c^2*d^2*e^4 - 6*a^2*b*c*d*e^5 + a^2*b^2*e^6)/((b^2*c^6 - 4*
a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c
^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*
b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (d + e x^{2}\right )^{\frac {3}{2}} \left (a + b x^{2} + c x^{4}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x**2+d)**(3/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(x**2/((d + e*x**2)**(3/2)*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x^2+d)^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{{\left (e\,x^2+d\right )}^{3/2}\,\left (c\,x^4+b\,x^2+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)),x)

[Out]

int(x^2/((d + e*x^2)^(3/2)*(a + b*x^2 + c*x^4)), x)

________________________________________________________________________________________